image
Scientists calculate the speed of death in cells, and it's surprisingly slow

Scientists calculate the speed of death in cells, and it's surprisingly slow

By Ramsey989 in 15 Aug 2018 | 06:45
share
Ramsey989 Ramsey989

Ramsey989 Ramsey989

Student
Faithful User
Forums Best User
Forum Loyal User
Posts: 122
Member since: 25 Dec 2015
Cells in our bodies die all the time, and now we know just how fast.

Scientists found that death travels in unremitting waves through a cell, moving at a rate of 30 micrometers (one-thousandth of an inch) every minute, they report in a new study published Aug. 10 in the journal Science. That means, for instance, that a nerve cell, whose body can reach a size of 100 micrometers, could take as long as 3 minutes and 20 seconds to die.

That may sound morbid, but it's precisely this lethal tide that keeps us alive and healthy. Apoptosis — or programmed cell death — is necessary for clearing our bodies of unnecessary or harmful cells, such as those that are infected by viruses. It also helps shape organs and other features in a developing fetus. (There is a second way cells can die, called necrosis, which is a different process that occurs as an unplanned response to a stressful event.)

If this process doesn't work properly, the consequences can be dire. For example, cancerous cells, happily living on, having slipped the grasp of the Grim Reaper, begin to spread instead of dying off. [5 Ways Your Cells Deal With Stress]

That may sound morbid, but it's precisely this lethal tide that keeps us alive and healthy. Apoptosis — or programmed cell death — is necessary for clearing our bodies of unnecessary or harmful cells, such as those that are infected by viruses. It also helps shape organs and other features in a developing fetus. (There is a second way cells can die, called necrosis, which is a different process that occurs as an unplanned response to a stressful event.)

If this process doesn't work properly, the consequences can be dire. For example, cancerous cells, happily living on, having slipped the grasp of the Grim Reaper, begin to spread instead of dying off. [5 Ways Your Cells Deal With Stress]

To figure this out, Ferrell and his team observed the process in one of the larger cells present in nature: egg cells of Xenopus laevis,or African clawed frogs. They filled test tubes with fluid from the eggs and triggered apoptosis, which they watched unfold by tagging involved proteins with fluorescent light. If they saw fluorescent light, it meant apoptosis was taking place.

They found that the fluorescent light traveled through the test tubes at a constant speed. If apoptosis had carried on due to simple diffusion (the spreading of substances from an area of high concentration to one of low concentration), the process would have slowed down toward the end, according to the study.

Since it didn't, the researchers concluded that the process they observed must be "trigger waves," which they likened to "the spread of a fire through a field." The caspases that are first activated, activate other molecules of caspases, which activate yet others until the entire cell is destroyed.

"It spreads in this fashion and never slows down, never peters out," Ferrell said in the statement. "It doesn't get any lower in amplitude because every step of the way it's generating its own impetus by converting more inactive molecules to active molecules until apoptosis has spread to every nook and cranny of the cell."

The team then wanted to watch this process occur inside the egg itself, as it would in nature. They noticed that when frog eggs died, they darkened in color. So, they initiated conditions that would naturally lead to the death of a frog egg and imaged what happened. Similarly, the cell darkened at the average rate of 30 micrometers per minute.

Such trigger waves are actually pervasive in nature, Ferrell said. Trigger waves also help cells reproduce, neurons propagate signals through the brain and viruses spread from cell to cell. Ferrell and his team hope to find out where else in biology trigger waves occur.
15 Aug 2018 | 06:45
0 Likes
 
 
Hmmmmn
15 Aug 2018 | 07:19
0 Likes
Now I know
15 Aug 2018 | 12:55
0 Likes
science and prove
15 Aug 2018 | 14:34
0 Likes
wow
15 Aug 2018 | 18:47
0 Likes
ok
16 Aug 2018 | 03:14
0 Likes
Ok
17 Aug 2018 | 03:02
0 Likes

Report

Please describe about the report short and clearly.

(234) 9121762581
[email protected]

GDPR

When you visit any of our websites, it may store or retrieve information on your browser, mostly in the form of cookies. This information might be about you, your preferences or your device and is mostly used to make the site work as you expect it to. The information does not usually directly identify you, but it can give you a more personalized web experience. Because we respect your right to privacy, you can choose not to allow some types of cookies. Click on the different category headings to find out more and manage your preferences. Please note, that blocking some types of cookies may impact your experience of the site and the services we are able to offer.